Robust Adaptive Tracking Control of Underwater Vehicles: Design, Stability Analysis, and Experiments
نویسندگان
چکیده
The unpredictable nature of the marine environment, combined with nonlinear dynamics and parameter uncertainty underwater vehicles makes control system design for such a challenging task. Based on these issues, hybridizing robustness adaptation in could result more successful missions. This article proposes robust adaptive (RAC) scheme trajectory tracking an autonomous vehicle. proposed RAC has been developed by exploiting advantages sliding mode controller law. Lyapunov arguments are to prove exponential stability finite-time convergence resulting closed-loop error invariant set, S (very close zero). Scenarios-based real-time experiments conducted Leonard ROV prototype demonstrate effectiveness approach. performance indices (root mean square error, integral absolute error) comparative analysis recent from literature confirm interest applications.
منابع مشابه
Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane
This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملRobust Adaptive Control of Underwater Vehicles: a Comparative Study
Robust adaptive control of underwater vehicles in 6 DOF is analyzed in the context of measurement noise. The performance of the adaptive control laws of Sadegh and Horowitz (1990) and Slotine and Benedetto (1990) are compared. Both these schemes require that all states are measured, that is the velocities and positions in surge, sway, heave, roll, pitch and yaw. However, for underwater vehicles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE-ASME Transactions on Mechatronics
سال: 2021
ISSN: ['1941-014X', '1083-4435']
DOI: https://doi.org/10.1109/tmech.2020.3012502